Magnetically assisted fast ignition.
نویسندگان
چکیده
Fast ignition (FI) is investigated via integrated particle-in-cell simulation including both generation and transport of fast electrons, where petawatt ignition lasers of 2 ps and compressed targets of a peak density of 300 g cm(-3) and areal density of 0.49 g cm(-2) at the core are taken. When a 20 MG static magnetic field is imposed across a conventional cone-free target, the energy coupling from the laser to the core is enhanced by sevenfold and reaches 14%. This value even exceeds that obtained using a cone-inserted target, suggesting that the magnetically assisted scheme may be a viable alternative for FI. With this scheme, it is demonstrated that two counterpropagating, 6 ps, 6 kJ lasers along the magnetic field transfer 12% of their energy to the core, which is then heated to 3 keV.
منابع مشابه
Autocatalytic Fusion-Fission Burn in the Focus of Two Magnetically Insulated Transmission Lines
A configuration made up of two nested magnetically insulated transmission lines, the inner one carrying a high voltage lower current – and the outer one a high current lower voltage – pulse, was in a previous communication proposed for the ignition of a magnetic field assisted thermonuclear detonation wave. Unlike the fast ignition concept, it does not require the compression of the DT fusion f...
متن کاملIgnition of a Thermonuclear Detonation Wave in the Focus of Two Magnetically Insulated Transmission Lines
For the ignition of a thermonuclear detonation wave assisted by a strong magnetic field, it is proposed to use two concentrically nested magnetically insulated transmission lines, the inner one transmitting a highvoltage lower-current-, and the outer one a high-current lower-voltageelectromagnetic pulse drawn from two Marx generators. The concept has the potential of large thermonuclear gains w...
متن کاملافروزش سریع- شوکی رهیافتی نوین برای همجوشی محصور سازی اینرسی
A new concept for inertial confinement fusion called fast-shock ignition (FSI) is introduced as a credible scheme in order to obtain high target gain. In the proposed model, the separation of fuel ignition into two successive steps, under the suitable conditions, reduces required ignitor energy for the fuel ignition. The main procedure in FSI concept is compressing the fuel up to stagnation. T...
متن کاملEnergy Gain of Magnetized Cylindrical D-T Targets in Fast Ignition Fusion
In recent years, many different plans have been considered to use the nuclear energy gained from inertial confinement fusion (ICF) as attempts to obtain high energy efficiencies. In conventional ICF methods, a small amount (about mg) of the deuterium–tritium compound is confined in a small spherical chamber of a few millimeters in radius and compressed by laser or heavy ion beams with powers in...
متن کاملترابرد نوترون، الکترون و فوتون در ساچمههای ICF در حالت اشتعال جرقهای و اشتعال سریع
Fusion energy due to inertial confinement has progressed in the last few decades. In order to increase energy efficiency in this method various designs have been presented. The standard scheme for direct ignition and fast ignition fuel targets are considered. Neutrons, electrons and photons transport in targets containing different combinations of Li and Be are calculated in both direct and fas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 114 1 شماره
صفحات -
تاریخ انتشار 2015